
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5425 93

Prediction of Facial Key points in Images Using

Neural Networks

Manish Bhelande
1
, Aadharsh Krishnan

2
, Akhilesh Bharadwaj

3
, Niraj Palecha

4
, Yash Tawade

5

Assistant Professor, Department of Information Technology, Shah & Anchor Kutchhi Engineering College, Chembur
1

UG Student, Department of Information Technology, Shah & Anchor Kutchhi Engineering College, Chembur
2,3,4,5

Abstract: Detecting facial key point positions on images is a challenging task since facial features differ significantly

from one individual to another. Even for a certain individual, there is an occurrence of wide variations due to factors

such as size, position, viewing angle, and illumination effects. In this paper, we present a system that trains and

compares multiple neural networks and try to optimize their learning rate constantly. This juxtaposes the different

levels of accuracy obtained in predicting the facial key points in images even with a wide array of significantly varying

facial features. Our method uses a simple three-layer neural network and distinct variations of convolutional neural

networks.

Keywords: facial key points, neural networks, hyper-parameter optimization, deep learning, convolution networks.

I. INTRODUCTION

The dataset we are working with is taken from an ongoing

contest - Facial Keypoints Detection [1] on Kaggle, which

was made available by Dr. Yoshua Bengio of the

University of Montreal. Training dataset consists of 7049

images with coordinates of 15 keypoints. Test dataset

consists of 1783 images. All images are 96x96 pixels.

Training, testing, and validation of a neural network and

deep neural networks with a large number of layers is a

time-consuming process. Therefore, for implementing and

training the neural networks much faster, we utilized GPU

for data-intensive calculations. Theano [2][3] is a Python

library that enables dynamic generation of optimized C

code that can be executed much faster on a CUDA capable

GPU.

II. RELATED WORK

Cascaded Convolutional Networks

Yi Sun, Xiaogang Wang & Xiaoou Tang [4] designed a

method for determining the positions of keypoints on

facial images with the help of a meticulously planned 3

level convolutional neural network. At every level, the

outputs of the different neural networks are combined for

an accurate prediction. With the help of convolutional

network deep structures, they extract global high level

facial features easily for the entire face region at the

initialization stage itself. This constitutes towards high

accuracy prediction of the keypoints. Moreover, since they

train the networks to predict every keypoint at the same

time sequentially, geometric constraints are thus encoded

implicitly. But even with high accuracy and reliable

prediction, it has been noticed that this technique has a

limitation that does not enable inputs to large regions for

the initial prediction.

Color Image Face Detection

Rein-Lien Hsu et al. [5] proposed an algorithm for facial

detection in digital color images even with different

Illumination conditions and high background complexity.

It utilizes an illumination compensation method and also a

nonlinear color transformation for detecting skin patches

spanning the entire image. It then generates face entities

according to spatial arrangement of the detected skin

regions. The authors suggest creating boundary maps for

verification of the face candidates but they still face

difficulty in high-luma and low-luma skin tones in color

images.

DropConnect Regularization
Li Wan, Matthew Zeiler et al. [6] introduced the concept

of DropConnect, which is a generalized version of

DropOut method. The paper proposes this new technique

where, instead of each connection, each output unit can be

dropped with an alternate probability of (1 - p). The

authors use DropConnect to regularize large fully

connected network layers within each neural network. For

training purposes, an arbitrarily selected subset of weights

within each network layer is set to zero. Each unit

therefore receives an arbitrary subset of units as input from

the previous layer. It is noticed that the dynamic sparsity is

beset on the weights and not on the output vectors of

previous network layers. Finally, it derives a bound on

performance based on generalization for both DropOut

and DropConnect.

Fig. 1 : Model’s facial keypoint prediction on a test digital

image.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 4, April 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5425 94

III. SYSTEM DESIGN

Simple 3 Layer Network or Single Hidden Layer

Network
We trained a simple fully connected neural network with a

single hidden layer with initially 50 neurons in the hidden

layer. The first of the three layers is the input layer with

9216 neurons which are fed with 9216 pixel values for

each image.

The output layer was defined with 30 neurons representing

the 15 keypoints with x and y coordinate for each

keypoint.

The weights for this network were randomly initialized

and updated on each iteration (epoch) with an optimization

technique known as Nesterov's Accelerated Gradient

Descent (NAG).

The training of a neural network is handled by tweaking

some hyper-parameters. Hyper-parameters such as

Learning rate and Momentum are associated in training a

neural network that is optimized using NAG.

The objective function used is Mean Squared Error(MSE)

as this a regression task. The training phase is executed for

400 times which optimized weights at the end of each

iteration. In training the network, we reached a minimum

of 2.989 for MSE with this simple method.

Convolutional Neural Network
Convolutional neural networks are a major reason for the

recent breakthrough in computer vision. This approach is

different from the network involving fully connected

layers. Convolutional layers use local connectivity and

pool sharing which decrease the number of parameters. A

unit in a convolutional layer connects a 2-dimensional

matrix of neurons from the previous layer.

The network implemented consists of 3 convolutional

layers and 2 fully connected layers. Each convolutional

layer is followed by a max-pooling layer. We found that at

around 1000 epochs, the network reaches 1.95 MSE and

doesn't improve much further.

Optimizing hyper-parameters
To train the networks we initialized the hyper-parameters,

Learning rate as 0.1 and Momentum as 0.9. These

parameters are used by the optimization method to update

the weights for the next iteration. Using static hyper-

parameters is not an efficient approach. Changing these

dynamically as the number of iterations increase is an

approach suggested by Ilya Sutskever et al. [7].

The learning rate is decreased linearly with the number of

iterations. Because, when we start training the model we

are farther away from an optimal state. Momentum, on the

other hand, is increased. These changes make the training

much faster and compared to the convolutional neural

network with static hyper-parameters, this approach stops

improving at around 750 iterations.

IV. CONCLUSION

Thus restating our proposed thesis and summarizing the

main points of this paper, we conclude stating that we

have tested two neural networks, namely a single hidden

layer network and a conventional neural network. Both of

the networks have been trained using hyper-parameters in

order to automatically update the weights for the next

iteration. However, on testing, it has been observed that

even though the latter network takes much more time to be

trained, it reaches a much better MSE than that of its

former counterpart hence proving to be a much more

viable option.

REFERENCES

[1]. Kaggle - Facial keypoints detection [Online]. Available:

https://www.kaggle.com/c/facial-keypoints-detection
[2]. F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A.

Bergeron, N. Bouchard, D. Warde-Farley and Y. Bengio. “Theano:

new features and speed improvements”. NIPS 2012 deep learning
workshop.

[3]. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G.

Desjardins, J. Turian, D. Warde-Farley and Y. Bengio. “Theano: A
CPU and GPU Math Expression Compiler”. Proceedings of the

Python for Scientific Computing Conference (SciPy) 2010. June 30

- July 3, Austin, TX
[4]. Yi Sun, Xiaogang Wang, and Xiaoou Tang. 2013. Deep

Convolutional Network Cascade for Facial Point Detection. In

Proceedings of the 2013 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR ’13). IEEE Computer Society,

Washington, DC, USA, 3476-3483.

[5]. Rein-Lien Hsu, M. Abdel-Mottaleb and A. K. Jain,” Face detection
in color images,” in IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 24, no. 5, pp. 696-706, May 2002.

[6]. Wan, Li, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob
Fergus.”Regularization of neural networks using DropConnect.” In

Proceedings of the 30th International Conference on Machine

Learning (ICML-13), pp. 1058-1066. 2013.
[7]. Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton.

"On the importance of initialization and momentum in deep

learning." In Proceedings of the 30th international conference on
machine learning (ICML-13), pp. 1139-1147. 2013.

[8]. Michael A. Nielsen,” Neural Networks and Deep Learning”,
Determination Press 2015

